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Abstract
Numerical computations of scattering of electromagnetic waves by hollow
conductors can produce spurious internal fields. This well-known effect is
examined in detail, at an elementary level, for two-dimensional scattering by a
circular cylinder. A plane electromagnetic wave of fixed frequency is scattered
from a perfectly conducting hollow circular cylinder. The scattered wave may
be regarded as produced by a current density in the cylindrical boundary, which
can be readily computed from standard theory. Alternatively, the boundary may
be divided into N discrete intervals and the current density may be computed by
expressing an appropriate integral equation in discretized form. There is then
a difference between the computed and exact current densities that is purely an
artefact of the discretization. Provided the radius is not chosen to correspond to
an internal resonance, the error in the current density does approach zero as N
increases, but in an unusual way: if the radius is just below a resonance value, it
can increase to large values before it decreases. As well as giving some error in
the computed scattered field, a conspicuous consequence is a spurious internal
field, which consists of a mixture of standing waves, not normal modes of the
cylinder except at resonance, one from each Fourier component of the incident
plane wave.

PACS numbers: 42.25.Fx, 02.30.Rz, 02.60.−x

1. Introduction

It is well known that numerical computation of the two-dimensional external scattering of
a monochromatic plane electromagnetic wave by a hollow conducting object can lead to a
difficulty. Burton and Miller (1971) pointed out that there is a lack of uniqueness in the solution
whenever the wave number coincides with a resonant wave number for an associated interior
problem. A given scattering problem may be reduced to solving an integral equation on the
boundary. Using this method Kleinman and Roach (1974), Martin (1982), Luz et al (1997)
and Chen et al (2001), among others, have shown how the problem of non-uniqueness may be
approached and have devised ways of dealing with it; Benthien and Schenck (1997) provide
a useful review. A consequence of the lack of uniqueness at wave numbers corresponding to
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Figure 1. E-polarization. Notation.

internal resonances is the appearance in numerical solutions of internal standing waves even
when theoretically none should be present. More seriously, such spurious internal waves can
appear even quite far from a resonance, a problem that becomes worse as the resonances get
closer together.

This paper traces in detail, at an elementary level, how these effects arise with a cylindrical
boundary, using the simplest method of solution for the two integral equations corresponding
to the two different polarizations. For a cylindrical boundary there are well-known exact
analytical solutions, and so the origin of the spurious waves can be clearly understood.

2. Scattering by a cylinder

A plane electromagnetic wave travelling along the x axis from positive to negative is incident
upon a hollow, perfectly conducting cylinder whose axis is Oz (figure 1). The two different
polarizations to be considered are: (1) E-polarization, where the electric vector in the incident
wave is parallel to Oz, and (2) B-polarization, where B in the incident wave is parallel to Oz.
In both cases the solution is independent of z. In case (1) the equivalent scalar problem has
a scalar wave u = Ez incident, with the Dirichlet boundary condition u = Ez = 0 on the
cylinder. In case (2) the equivalent scalar problem has a scalar wave u = Bz incident, with
the Neumann boundary condition ∂u/∂r ∝ Eθ = 0 on the cylinder. Given the two scalar
solutions the other non-zero components of the field are readily obtained by differentiation
from Maxwell’s equations (Born and Wolf 1999, section 11.4.1).

3. E-polarization

This is the more straightforward of the two cases. Let the incident wave have unit amplitude
of electric field and wave number κ with time dependence e−iωt . Write the space-dependent
part as Einc

z = uinc = e−iκx , use polar coordinates r, θ and expand in terms of Bessel functions
Jm(κr), thus (Morse and Feshbach 1953)

uinc = e−iκx =
∞∑

m=0

εm(−i)mJm(κr) cos mθ (1)
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where

εm =
{

1 if m = 0
2 if m > 0.

The scattered wave must be of the form

usc =
∞∑

m=0

CmH(1)
m (κr) cos mθ (2)

where the H(1)
m (κr) are Hankel functions of the first kind, corresponding to outgoing waves.

Henceforward we shall omit the superscript (1). From the condition utotal = uinc + usc = 0 on
the boundary r = a, it follows that for each term

Cm = −εm(−i)mJm(κa)

Hm(κa)
.

Thus the total wave is

utotal =
∞∑

m=0

εm(−i)m cos mθ

[
Jm(κr) − Jm(κa)

Hm(κa)
Hm(κr)

]
. (3)

This is the required well-known solution for the field outside the boundary cylinder.
We now examine an alternative approach in which the scattered field is regarded as being

caused by a surface current in the cylinder flowing in the z direction with density jz(θ). We
can find jz from the above solution by noting that it is given by the discontinuity in Bθ at the
boundary. In general, from Maxwell’s equations,

Bθ = i

κc

∂utotal

∂r
and µ0jz = B+

θ − B−
θ (4)

where + and − refer to the outside and inside, respectively. If we assume that there is no field
inside the cylinder, by screening, then jz = µ−1

0 B+
θ = i

κZ0

(
∂utotal

∂r

)
r=a

, where we have written
κcµ0 = κZ0 with Z0 = √

µ0/ε0. Carrying out the differentiation of (3) and setting r = a we
have

1

κ

(
∂u

∂r

)
r=a

=
∞∑

m=0

εm(−i)m cos mθ

[
J ′

m(κa)Hm(κa) − Jm(κa)H ′
m(κa)

Hm(κa)

]
. (5)

Writing Hm = Jm + iYm and using the Wronskian relation JmY ′
m − J ′

mYm = (2/πκa) then
gives

jz(θ) = 2

πκaZ0

∞∑
m=0

εm(−i)m cos mθ
1

Hm(κa)
. (6)

In the absence of any free oscillations within the cylinder (see below) the current density
found in this way is exact, and will be designated as j true

z (θ). By construction, it produces
the scattered wave Esc

z outside the circle and −Einc
z inside, to give Etotal

z = 0. It is simple to
compute j true

z (θ) to any desired accuracy from equation (6). The series must be terminated
only when two successive terms become less than a set value ε (in units of Z−1

0 ). Thus, for
example, if ε = 10

−6
, κa = 1 requires 10 terms, while κa = 20 requires 40 terms. Figure 2

shows the amplitude and phase of j true
z (θ) for various κa. For small a the current density

approaches infinity (with a phase of 1
2π), but the current itself, namely 2πajz, approaches

zero. For large κa the current density at the back of the cylinder falls to zero, unsurprisingly.
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Figure 2. E-polarization. j true
z (θ) for various κa. The units of j true

z (θ) are Z−1
0 .

3.1. Solution in terms of the current sources

This alternative computational approach follows the method used in (Nye 2002) to find the
exact diffraction field for several parallel slits in a conducting screen. The magnetic potential
A = (0, 0, Az) at any fixed point P = (r0, θ0) is given as an integral over the boundary circle
of the current density jz(θ) at the variable point Q = (a, θ) by

Az = iµ0a

4

∫ 2π

0
dθ jz(θ)H0(κρ)

where ρ is the distance PQ (figure 2). The electrostatic potential is zero, because jz(θ) is
uniform with z and there is no accumulation of charge. The scattered electric field is then
given simply by Esc

z = iωAz. Hence

Esc
z = −Z0κa

4

∫ 2π

0
dθ jz(θ)H0(κρ). (7)
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The boundary condition is that, at points on the circle r0 = a, this scattered field just cancels
the incident field, to give zero total field. Thus

Z0κa

4

∫ 2π

0
dθ jz(θ)H0(κρ) = e−iκacosθ0 . (8)

Since P is now on the circle, ρ = ∣∣2a sin 1
2 (θ − θ0)

∣∣. In principle, this integral equation may
be solved to find jz(θ). Up to this point all is straightforward and well known.

These results in conjunction with equations (6) and (7) imply the following mathematical
identities when κa satisfies the resonance condition Jm(κa) = 0. For all positions of
P = (r0, θ0) outside or on the circle∫ 2π

0
dθ cos mθH0(κρ) = 0 (9)

where ρ = PQ. For all positions of P inside the circle,∫ 2π

0
dθ cos mθH0(κρ) = 2πHm(κa)Jm(κr0) cos mθ0. (10)

The main point of this paper is that, for certain ranges of κa near internal resonances, the
solution of (8) computed numerically, which we shall call j com

z (θ), does not agree satisfactorily
with the correct solution j true

z (θ) given by equation (6). The effect of the disagreement is most
conspicuous inside the boundary, for when j com

z (θ) is substituted in equation (7) it gives a
scattered field inside that does not properly cancel the incident field, thereby producing a
spurious non-zero internal field. It also produces an unexpectedly high error in the field
outside.

We have so far ruled out free oscillations within the cylinder by insisting that the interior
field is zero. The term on the right-hand side of equation (8) may be thought of as a forcing
term and may be expanded as a Fourier series by setting r = a in equation (1). Consider the
situation when there is only a single forcing term, the mth term. If we also suppose that κa

is such that it is the nth root of Jm(κa) = 0, that is, an (m, n)th order resonance, equation (1)
shows that the forcing term becomes zero. A possible solution is now that there is zero current
and the field is simply the standing wave u = εm(−i)mJm(κr) cosmθ , both inside and outside
the circle. There is no discontinuity in gradient across the circle, and so no current. The
boundary condition is satisfied, because Jm(κa) = 0 and the boundary is a nodal surface.
With no current there is no scattered wave; it is as if the boundary were transparent. This is a
very simple example of the interior/exterior duality studied by Smilansky and his colleagues
on which there is an extensive literature (e.g., Berry 1994, Dietz et al 1995). Note that the
result only applies when Jm(κa) = 0 exactly.

When Jm(κa) = 0 we can add to the zero current solution, with its total interior field
u = εm(−i)mJm(κr) cos mθ , an additional interior scattered field u = AJm(κr) cosmθ , where
A is an arbitrary complex constant. This will be associated with a current proportional to
A cosmθ , and we know from equation (9) that this produces a zero scattered wave outside the
circle, as well as the scattered field AJm(κr) cosmθ inside the circle. This internal resonance
has infinite Q and so the result applies only when κa has exactly the required value.

3.2. The discretized integral equation

The integral equation (8) was solved for jz(θ) numerically, by putting it into discrete form.
Expressing the integral as a summation over N points equally spaced by �θ gives N linear
equations of the form

Likjk = Ri i, k = 1, . . . , N (11)
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Figure 3. E-polarization. det(Lik) is plotted logarithmically against κa, to show the resonances
(m, n). (N = 40).

where each row of the matrix Lik corresponds to a value of θ0 and each column to a
value of θ . The terms on the leading diagonal have ρ = 0, and therefore a logarithmic
singularity in the imaginary part ofH(1)

0 (κρ). The infinite value is replaced by the ordinate
(2/π)[ln(�θγs/4) − 1], where ln γs = γ = 0.577 . . . , to give the correct value for the
summation over the two neighbouring intervals. Equations (11) were then solved for the jk

by matrix inversion, thus, in matrix form

j = L−1R. (12)

The solution of this equation depends on the size of the matrix and we shall denote it
by j com

z (N, θ). The relation between j com
z (N, θ) and the solution j true

z (θ) of the true integral
equation is our focus of interest, because the behaviour for special ranges of κa makes it far
from straightforward. As has been remarked j com

z (N, θ) for finite N, does not in general agree
with j true

z (θ). In particular, we shall not assume that the limit of j com
z (N, θ) as N → ∞ will

be j true
z (θ), as found from equation (6). The discrepancies are most marked near resonances.
If the right-hand side of (11) is replaced by zero the resulting set of equations would have

a non-zero solution if det(Lik) = 0. In fact this never happens for a matrix of finite size.
Plotting the determinant against κa for a given size of matrix N × N gives a curve (figure 3)
showing dips which are all slightly to the left of the resonance values of κa. This is an effect
of the finite size of the matrix: as N is increased the dips become deeper and their positions
approach the resonance values. Owing to the banded nature of the matrix the sum of each row
(and column) is the same. If this sum were zero the determinant would also be zero, but for
finite N that condition is only fulfilled approximately (the equations are ill-conditioned), near
the resonance values of κa.

Let us see what j com
z (N, θ) will be when κa is set at (in practice very close to) a resonance

value. Ri on the right-hand side of equation (11) derives from e−iκacosθ0 on the right-hand
side of equation (8), and from equation (1) may be expanded as the Fourier cosine series∑∞

m=0 εm(−i)mJm(κa) cos mθ . Consider the situation where there is only a single forcing
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term, the mth term, on the right-hand side. Then j com
z (N, θ) also will contain only a single

term in cos mθ . Now choose κa to be one of the zeros of Jm(κa) = 0, so that the mth Fourier
component of the right-hand side is in fact zero. The mth Fourier component of j com

z (N, θ) is
given by j = L−1R with R zero. L−1 is not infinite for any finite N (det(Lik) �= 0), and hence
the mth Fourier component of j com

z (N, θ) is exactly zero. But if j com
z (N, θ) is zero it can

generate no scattered field; the circle is transparent. This is just the zero current solution we
noted in section 3.1, in which the field inside the circle is simply the mth Fourier component
of Einc

z namely εm(−i)mJm(κr) cosmθ . This result is independent of the size N of the matrix,
but of course it only applies at the values of θ that are sampled. It is crucial that the result
depends on L−1 not being infinite, whereas in the ideal case it would be infinite, and would
therefore allow a finite but indeterminate jz (with an arbitrary complex factor A).

In summary, if κa is chosen to be close to one of the zeros of Jm(κa) = 0, and if we
consider only the mth term in the incident wave, the matrix equation (12) will generate
a current density j com

z (N, θ) = 0, which will lead numerically to a total internal field
εm(−i)mJm(κr) cos mθ , which is the mth Fourier component of the incident field (a standing
wave, with a uniform phase of 0,± 1

2π or ±π apart from jumps of π where Jm(κr) or cos mθ

changes sign). Since this will happen however large N may be, whereas the true internal
field is zero, it shows that the matrix method is bound to fail when κa is very close to
resonance.

3.3. The approach to the limit

Now consider the values found for j com
z when κa is not necessarily set at a resonance value.

Figure 4 is constructed by taking for Ri in equation (12) simply its first Fourier component
(using m = 1 purely for illustration) and computing j com and j true (the suffix z is to be
understood). (Since they are both proportional to cos θ it is convenient to compute them only
at θ = 0.) In figure 4(a) j com falls to zero at the resonance values m,n = 1, 1 and 1, 2, as
forecast, but has sharp peaks just below the resonances that arise from the comparatively large
values of (det L)−1 (figure 3). Figure 4(b) shows the neighbourhood of the resonance value
κa = 3.83 on a larger scale. As N increases, the peaks in j com get higher and narrower
and move to the right (figure 4(c)), with the curve always reaching zero at the resonance
values. Eventually all this behaviour crowds into a series of singularities at the resonance
values.

The difference between j com and j true defines a residual current j res. The curve for |j res|
at N = 40 shows how it is large near the resonances but relatively small in between them. In
the limit N → ∞ |j res| becomes uniformly zero except for a series of discrete spikes at the
resonance values.

The source of the computational problems is now clear. Considering only a single Fourier
component, the discretized integral equation is computing an approximation not to the smooth
j true curve, but to the same curve decorated with infinitely narrow spikes at the resonances. At
the same time the computed values at the resonances themselves are tied down to zero. For
finite N the result is broadened peaks just below the resonances (why they are below rather
than above is not apparent).

Still considering only the mth Fourier component of the incident plane wave, suppose κa

is fixed at a value not corresponding to any of the zeros of Jm(κa). As N is increased the
computed current density j com

z will eventually approach the correct one j true
z , because the bad

peak will ultimately lie to the right of the selected κa, but this could require an impractically
large N. Thus, for most values of κa the discretized model computes a current density that
immediately begins to approach the correct one as the size of the matrix is increased. But
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Figure 4. E-polarization. For (a), (b) and (c) only the m = 1 Fourier component of the plane
incident wave is present; for (d ) the complete plane wave is present. (a) The magnitudes of the
resulting m = 1 components of the various j are plotted against κa for N = 40. The resonance
values of κa are indicated. (b) The neighbourhood of the (1,1) resonance on a larger scale.
(c) The approach of the |j com| curve to the limit as N → ∞. (d ) |j com

z | and |j true
z | at θ = 0, using

N = 40.

if κa happens to lie between one of the bad peaks and the resonance value, the error will
increase to a large value, as N increases and the peak passes through from left to right, before
it eventually decreases to zero. However large the matrix, the bad bands between the peaks
and the resonances will always exist.

When the complete plane wave is incident j com
z (θ) contains a mixture of Fourier

components, one from the tail of each resonance, unless κa is near to a peak of j com
z (θ) for a

particular m, in which case that Fourier component dominates. To illustrate this, figure 4(d )
plots

∣∣j com
z (0)

∣∣ against κa, using N = 40, for the range 0 < κa < 5. There is anomalous
behaviour near each resonance, more pronounced to its left than to its right.
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3.4. Effect on the computed fields

To compute the field from the current density we use the discretized version of equation (7) for
Esc

z and add Einc
z . j true

z (θ) then generates an external field that agrees with equation (3) to an
accuracy (using N = 20) of typically 1 part in 106 or better. It also generates an internal field
that cancels the incident field, as it should. On the other hand, when j com

z (N, θ) is inserted
in the discretized version of equation (7) its most conspicuous effect is to produce a false
non-zero total field inside the boundary. Figure 5 shows an example, choosing κa =6.3799,
which is one of the m = 3 resonances. The complete incident plane wave is present and in
figure 5(b) the cos 3θ symmetry of the internal field is evident—but it is only approximate.
The explanation is as follows.

With a general κa, consider first the effect of the mth Fourier (Bessel) component of
the incident plane wave of equation (1). It produces a computed current density j com

z (θ)

that is proportional to cos mθ . But we know that the true current density j true
z (θ), which

is also proportional to cos mθ , generates an internal scattered standing wave proportional to
Jm(κr) cos mθ that just cancels the mth component of the incident field. Unless κa is such
that Jm(κa) = 0, this standing wave will not be a normal mode of the circle, because r = a

is not a nodal line. In just the same way the computed current density j com
z (θ) also generates

an interior standing wave, not a normal mode, proportional to Jm(κr) cos mθ , but because
j com
z (θ) �= j true

z (θ) for finite N it cannot exactly cancel the incident field. Thus, adding
the scattered and incident fields, we are left with an unwanted interior field that is a standing
wave proportional to Jm(κr) cos mθ . If Jm(κa) = 0, j com

z (θ) = 0 and the standing wave is
just the completely uncancelled mth component of the incident field, namely εm(−i)mJm(κr)

cos mθ . The effect will be most pronounced when κa is at a peak of the j res
z (θ) curve for a

given m and N.
For the complete incident plane wave the unwanted interior field will be a superposition

of the standing waves coming from each Fourier component, and so it will not itself be a pure
standing wave. This is illustrated in the phase patterns on the right of figures 5(b) and (c),
which do not show uniform phase with jumps of π . These two figures are special because κa

is at a resonance. In contrast, figures 6(a) and (b) are for κa = 1, which is quite far from a
resonance. The error in j com

z (θ) is quite small and so the computed interior field is zero within
the accuracy of the plot.

Coming now to the exterior field, it has the correct form (compare figures 5(a) and (b)).
Table 1 compares the errors in the external field at particular points for N = 20 and N = 40,
and shows that, in general, doubling N halves the error. With N = 20 and excluding κa near
resonance, the errors are of the order of 9–16%, which improves to 5–8% with N = 40. One
per cent accuracy would require N ≈ 200.

On the other hand, when κa is just below a resonance there can be a large error in the
external field (penultimate line of table 1), because of the error in j com

z (θ). In principle, if κa

and N were increased together in suitable combination, the error would increase without limit.

4. B-polarization

The analysis for B-polarization follows similar lines. Although the derivation of the integral
equation is a little more complicated, the final results are much the same.

Let the scalar u now stand for Bz. The boundary condition on the cylinder is then
∂u/∂r ∝ Eθ = 0 instead of u = 0, and the current density, which is now in the θ

direction, is given by the discontinuity in u. Specifically, let the incident wave be the same
as before, with unit amplitude of the electric vector, but with B directed along Oz, so that
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Table 1. Error in the external field (E-polarization).

Error(%)

N = 20 N = 20 N = 40 N = 40
x = 2a x = −2a x = 2a x = −2a

κa y = 0 y = 0 y = 0 y = 0

0.1 13 16 6.2 8.0
0.5 3 7 2.0 3.3
1 0.7 1.3 0.3 0.7
2 5 7 2.4 3.4
3 40 9 19.8 5.4
3.627a 58 410 20.3 47.8
3.83b 16 85 8.0 40.0

a Peak of j res
z for m = 1, N = 20.

b κa = β11.
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uinc = B inc
z = (1/c) e−iκx. Expanding this incident wave as equation (1) and the scattered

wave as equation (2), the analogue of equation (3), for r � a, is found as

utotal = c−1
∞∑

m=0

εm(−i)m cos mθ

[
Jm(κr) − J ′

m(κa)

H ′
m(κa)

Hm(κr)

]

= c−1
∞∑

m=0

εm(−i)m cos mθ

[
Jm(κr) − (m/κa)Jm(κa) − Jm+1(κa)

(m/κa)Hm(κa) − Hm+1(κa)
Hm(κr)

]
.

(13)

Assuming that B total
z = 0 inside the circle r = a, µ0jθ (θ) = −B total

z = −utotal just outside.
On using the Wronskian relation it then follows that

jθ (θ) = (2/π)Z−1
0

∞∑
m=0

εm(−i)m+1 cos mθ

mHm(κa) − κaHm+1(κa)
. (14)

This exact jθ (θ) will be designated as j true
θ (θ).

4.1. Solution in terms of the current sources

The analogue of equation (8) is obtained as follows. Consider vector line elements ds0, ds on
the circle at P and Q respectively (figure 7(a)), with lengths ds0 = a dθ0, ds = a dθ. Unlike the
case of E-polarization there is now a non-zero electric charge density q(s) on the circle given
by ∂jθ/∂s = iωq(s). Esc at P, due to the current density, is given in terms of the electrostatic
potential φ0 and the magnetic potential A0 as Esc = iωA0 − ∇φ0.

At P

φ0 = ia

4ε0

∫
dθ q(θ)H0(κρ), where ρ =

∣∣∣∣2a sin
1

2
(θ − θ0)

∣∣∣∣ ,
with gradient

∇φ0 = i

4ε0

∫
dθ q(θ)

∂H0(κρ)

∂θ0
.
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Also at P

A0 = iµ0

4

∫
ds jθ (θ)H0(κρ).

Therefore, the tangential component of Esc is

Esc
θ = iωAθ − ∂φ0/∂s0

= −ωµ0a

4

∫
dθ cos(θ − θ0)j θ (θ)H0(κρ) − i

4ε0

∫
dθ q(θ)

∂H0(κρ)

∂θ0
.

In the second term substitute q = (1/iω)∂jθ/∂s = (1/iωa)∂jθ/∂θ , and then integrate by parts
to give + 1

4ε0ωa

∫
dθ jθ (θ) ∂2H0(κρ)

∂θ0∂θ
. Hence, since ∂ρ/∂θ = −∂ρ/∂θ0,

Esc
θ = −Z0a

4

∫
dθjθ (θ)

[
κH0(κρ) cos(θ − θ0) +

1

κa2

∂2H0(κρ)

∂θ2

]
. (15)

The boundary condition is Esc
θ = −Einc

θ and Einc
θ = −cos θ0 e−iκa cos θ0 at the point (a, θ0).

Therefore, the analogue of the boundary integral equation (8) is

−Z0a

4

∫
dθ jθ (θ)

[
κH0(κρ) cos(θ − θ0) +

1

κa2

∂2H0(κρ)

∂θ2

]
= cos θ0 e−iκa cos θ0 . (16)

4.2. Computing the field

The scattered field B is obtained from A by using the equation B = curlA. Thus at the point
P = (x, y), Bsc

z = ∂Ay/∂x − ∂Ax/∂y and

Ax = iµ0a

4

∫
dθ jx(θ)H0(κρ) Ay = iµ0a

4

∫
dθ jy(θ)H0(κρ)

where jx = −jθ sin θ , jy = jθ cos θ and ρ =
√

(x − a cos θ)2 + (y − a sin θ)2.
Carrying out the differentiations, using H ′

0 = −H1, we find

Bsc
z = − iµ0κa

4

∫
dθ jθ (θ)H1(κρ)

x cos θ + y sin θ − a

ρ

= − iµ0κa

4

∫
dθ jθ (θ)H1(κρ) cos α (17)

where α is the angle shown in figure 7(b).

4.3. Numerical results

Figures 8(a) and (b) show distributions of j true
θ (θ) found from equation (14) for a number of

values of κa. Oscillations with a period of 1
2λ occur towards the rear. These current densities

substituted into equation (17) produce no field inside the circle.
The integral equation (16), to be expressed in discrete form, is very similar to equation (8)

except for the presence of the second derivative H ′′
0 . On the face of it this has a θ−2 singularity.

In the discretization we approximate H ′′
0 by using the second differences of the H0 values.

Then a matrix equation of the form (11) is obtained. Where infinite values of H0 occur
in the matrix Lik they are replaced by finite values exactly as described in section 3.2 and
the matrix equation is solved for the j values. The justification for treating the singularity
in this way is as follows. Integrating twice by parts and making use of the periodic nature
of the solution, converts the integrand jθH

′′
0 to j ′′

θ H0, so that the only singularity is in H0

and is logarithmic. One could then go on to solve the matrix equation for the known linear
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Figure 8. B-polarization. j true
θ (θ) for different values of κa.

combination of j and j ′′ and then integrate to find j itself. However, it is computationally
equivalent, and much simpler, to do what was described above.

Just as with E-polarization the solutions for the current density j com
θ include a residual part

j res
θ (θ) that produces a spurious internal field, and has some effect on the external field. A plot

of det(Lik) against κa is similar to that in figure 3, but trends the opposite way, downwards,
and shows dips just to the left of the zeros of J ′

m(κa).
As for E-polarization j res

θ (θ) is defined as j com
θ (θ) − j true

θ (θ). Suppose we consider only
the mth Fourier component of the whole field, and suppose that κa is chosen to correspond to
an mth order resonance; thus J ′

m(κa) = 0. With E-polarization we were able to expand Ri on
the right-hand side of equation (11) as a Fourier cosine series by inspection of equation (1),
but with B-polarization the factor cos θ0 on the right-hand side of equation (16) prevents this.
The remedy is to rederive Ri , by using the general expression, Eθ = (c/iκ)(∂Bz/∂r) and the
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Figure 9. B-polarization. The analogue of figure 4. Only the m = 2 Fourier component of the
plane incident wave is present. The resulting m = 2 components of the various j are plotted against
κa. (a) The resonance values of κa are indicated, the (2, 1) and (2, 2) resonances being picked
out. For κa < 1 the j true and j com curves are nearly coincident. (b) The neighbourhood of the
(2, 1) resonance on a larger scale.

expansion (1). Thus,

B inc
z = c−1 e−iκx = c−1

∞∑
m=0

εm(−i)mJm(κr) cos mθ

and, at (a, θ0),

−Einc
θ = −

∞∑
m=0

εm(−i)m+1J ′
m(κa) cos mθ0

which is in the required form of a cosine series. With θ0 = θi the mth term on the right-hand
side is the necessary expression for Ri . But we have specified that J ′

m(κa) = 0. Hence, in the
matrix equation j com

θ = L−1R, considering only the mth component, R is now zero, and L−1

is not infinite. Thus j com
θ = 0. Just as for E-polarization, if j com

θ (N, θ) is zero it can generate
no scattered field; the cylinder is transparent.

Figures 9(a) and (b) for B-polarization are analogous to figures 4(a) and (b) for E-
polarization. For a particular value of m (m = 2) they show the amplitude of the mth Fourier
component of j com

θ , j true
θ and j res

θ as the radius κa is varied. When κa coincides with one of
the zeros of J ′

m(κa), j com
θ becomes zero and j res

θ = −j true
θ . The internal field, which should

not be present at all, is then simply the mth component of the incident field.
Figure 10 is an example of a field of B total

z at a value of κa for the resonance m = 3, n = 1,
computed from equation (17) after adding the incident field. The approximate three-fold
symmetry (cos 3θ) of the internal field is clearly seen, even though other Fourier components
with m = 1, 2, 4 and 5 are present in the current density. The whole picture is thus quite
similar to that for E-polarization.
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Figure 10. B-polarization. The field of B total
z for κa = 4.2012, corresponding to the resonance

(3, 1).

5. Summary

For both E- and B-polarizations the wave scattered from the cylinder may be regarded as
produced by a current density in the cylindrical boundary j true(θ), where θ is the polar angle,
and this can be readily computed from standard theory. Alternatively, the boundary may be
divided into N intervals and the current density, now denoted j com(θ), may be computed by
expressing the appropriate integral equation in discretized form. The difference between
j com(θ) and j true(θ) defines a residual current density j res(θ) that is purely an artefact
of the discretization. It arises because the discretized integral equation is computing an
approximation not to the smooth j true(θ) curve, but to the same curve decorated with infinitely
narrow spikes at the resonances. Provided the radius is not chosen to correspond to an internal
resonance, j res(θ) does approach zero as N increases, but in an unusual way: if the radius
is just below a resonance value, j res(θ) can increase to large values before it decreases. The
consequence is a correspondingly large error in the scattered field, but, most notably, the
appearance of an internal field when none at all should be present; this consists of a mixture
of standing waves, not normal modes of the cylinder (except at resonance), one from each
Fourier component of the incident plane wave.
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